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Abstract

The segmentation and analysis of blood vessels has
received much attention in the research community. The
results aid numerous applications for diagnosis and
treatment of vascular diseases. Here we use level set
propagation with local phase information to capture the
boundaries of vessels. The basic notion is that local
phase, extracted using quadrature filters, allows us to
distinguish between lines and edges in an image. Not-
ing that vessels appear either as lines or edge pairs, we
integrate multiple scales and capture information about
vessels of varying width. The outcome is a “global”
phase which can be used to drive a contour robustly to-
wards the vessel edges. We show promising results in
2D and 3D. Comparison with a related method gives
similar or even better results and at a computational
cost several orders of magnitude less. Even with very
sparse initializations, our method captures a large por-
tion of the vessel tree.

1. Introduction

A correct segmentation of blood vessels is of ma-
jor importance in many medical applications, e.g. diag-
nosis, surgical planning, simulation and training. It is
well accepted that there is no general purpose segmen-
tation method suitable for all applications and imaging
modalitites. As such, the problem has been approached
from many disciplines using many different methods.
Roughly, the techniques either segment the vessel cen-
terlines (skeleton based) or the vessel boundaries (non-
skeleton based). The basic challenges that all vessel
segmentation methods tackle are varying vessel width,
bifurcations and changing contrast. We refer the reader

to [8, 2] for more complete reviews of previous work.
For our method we use the fact that vessels of dif-

ferent widths all can be perceived as lines or edge
pairs, depending on the scale on which they are ob-
served. Thus, it is possible to use a line detector in-
corporating multiple scales as previously demonstrated
by [3]. Our approach extends this idea by also including
edge detection. Furthermore, rather than using multiple
scales purely for noise reduction, we accumulate both
line and edge information across all scales, maximizing
the amount of information extracted. The core of our
method is the use of quadrature filters and local phase
as a line/edge detector which will be further elaborated
in Section 2. In comparison to gradient-based edge de-
tectors, local phase gives well defined vessel boundaries
even for poor contrast. This leads to robust conver-
gence when combined with front propagation methods
for segmentation, as will be outlined in Section 3. To
verify our results we use the DRIVE database of retinal
images [7] in 2D and angiogram images generated by
magnetic resonance (MRA) in 3D.

To summarize, our main contribution is the use of
quadrature filters and local phase in a multi-scale set-
ting producing global information usable for segment-
ing vessels of varying width and contrast. Local phase
has been used for live-wire segmentation in [4], but to
the best of our knowledge, the use of local phase as a
driving force for propagating fronts is a novel idea.

2. Quadrature filters

A quadrature filter is zero over one half of the Fourier
domain, as defined by:

Fk(u) = 0, u · nk ≤ 0 (1)
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Figure 1. Local phase
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Figure 2. Filter across increasing scales

where u is frequency and nk the filter direction. In
practice, the filter is implemented as a complex valued
filter pair consisting of a line filter as real part and an
edge filter as imaginary part [1]. Thus, when the fil-
ter response is purely real, the filtered signal is strongly
“line-like”, whereas a purely imaginary response indi-
cates an “edge-like” signal. The magnitude of the fil-
ter response gives the strength of the structure, while
the angle of the response indicates the type of struc-
ture (line/edge). The angle θ is referred to as the local
phase, illustrated in Figure 1 along with the color map-
ping used in remaining illustrations. Since θ is indepen-
dent of signal strength, the local phase as a line/edge
detector is invariant to image contrast, making it an ap-
pealing and more robust alternative to gradient-based
edge detectors.

2.1. Combining filter directions

In practice, an image is filtered in at least 3 uni-
formly distributed directions in 2D and 6 directions in
3D to capture structure of all orientations. Thus, the lo-
cal phase is a characteristic along particular directions.
To produce a rotation invariant phase map, the filter
responses from all orientations need to be combined.
However, the different filter directions introduce an am-
biguity. Consider a vertical edge. A filter with dominant
direction along the positive real axis approaches this
edge from the left, giving a phase tending to 90◦. On
the contrary, a filter with dominant direction along the
negative real axis will approach it from the right, giving
a phase tending to−90◦. This will produce cancellation
effects and discontinuities in the combined phase map.
The solution is to compute the orientation of the domi-
nant structure at each point, and flip the phase along the
real axis for a filter with direction opposing the orienta-
tion. This will produce the same phase response for an
edge independent of filter direction. When this ambigu-
ity has been resolved, a rotation invariant phase map is
produced by summing the filter responses for all direc-
tions.

2.2. Multi-scale integration

The core idea behind our method is to use the fact
that vessels of different width appear both as lines and
edges across different scales. In order to produce a
global phase map used for segmentation, we want to
combine the different scales. We achieve this by a
weighted sum over all scales, such that high strength
responses are favored. This is expressed as:

q =
∑N
i=1 |qi|βqi∑N
i=1 |qi|β

(2)

where N is the number of scales, qi is the combined
filter response for each scale and β is a weight parame-
ter. To illustrate this, we use a synthetic “wedge” image
(see Figure 2(a)) which displays a large width variation.
The filtering of 5 scales and integration using a typical
value of β = 1 are shown in Figure 2. Note that the
result contains detailed information about both line and
edge structures. As a final processing step, we apply
normalization to the output magnitude by:

â(σ) = 1/(1 + (σ/a)2) (3)

where a = |q|, q is the global phase map and σ is a data
dependent threshold parameter. This normalization re-
moves scaling issues associated with different inputs, so
σ should be viewed as a replacement for more compli-
cated parameters compensating for scaling. Currently,
σ is set manually, but can be automatically computed
based on analysis of the noise.

3. Level set methods and front propagation

From the previous section, we can conclude that
edges produce a phase of 90◦, which means that edges
align with the zero-crossings of the real part of the
phase map. The phase based edge detector has a major
advantage compared to other common gradient-based
edge detectors. Briefly, edge detectors based on gradi-
ents are typically formulated as g(x) = 1/(1 + |∇I|2)



Figure 3. Sequence of iterations

where I is the input image. The idea is that g(x) ap-
proaches zero when the gradient magnitude is large. Us-
ing front propagation techniques, this is often used as a
“switch” to halt propagation near edges. However, a
common problem is leakage since g(x) > 0 for real-
istic situations. Using phase based edge detectors on
the other hand, gives very robust convergence to edges
since they are located on a well defined zero-crossing.

In our work we use the popular level set method [5]
as a means for front propagation. This technique repre-
sents the front, or contour, implicitly as the zero level set
of a time dependent signed distance function φ(x(t), t),
i.e. {x(t) : φ(x(t), t) = 0}. Equations of motion can
be derived by differentiating φ w.r.t. time. This frame-
work for deforming contours has two major advantages:
Topological changes are handled naturally (as opposed
to explicit/parametric representations) and it allows for
non-monotonic motion (as opposed to the fast marching
method [6]).

Relating this to the phase based edge detector, our
idea is to use the real part of the phase map as a
speed function to drive a deforming contour. We add a
curvature-based term for regularization, giving the evo-
lution equation:

∂φ

∂t
= −Re(q̂(σ)) |∇φ|+ ακ |∇φ| (4)

where q̂ denotes the normalized phase map by Eq. (3),
α is a regularisation parameter and κ is curvature (mean
curvature in 3D). A sequence of iterations using this
speed function is displayed in Figure 3.

4. Experiments

We implemented the proposed method in Matlab.
The level set framework is standard using narrow band
computations and either PDE-based or fast marching-
based reinitialization. The code can be found online at
http://dmforge.itn.liu.se/icpr08/ for refer-
ence. For comparison we implemented the “Flux Max-
imizing Flow” (FMF) [9] which has been proven as a
robust alternative to gradient-based segmentation. This

(a) Input image and
manual seeds

(b) FMF speed
function

(c) Phase map speed
function

(d) FMF results (e) Phase map results

Figure 4. Segmentation result in 2D

approach is similar to ours in the sense that it views ves-
sels at different scales and generates a speed function
where vessel boundaries are located on zero-crossings.
Thus, the same level set propagation tool can be used.

For our first experiment in 2D, we used a 458× 265
retinal image from the DRIVE database [7] displayed in
Figure 4(a). The speed functions generated by FMF and
our method are shown in Figure 4(b) and Figure 4(c).
For the phase map speed function we used 4 filters of
size 15×15 with bandwidths of 4 octaves and center fre-
quencies of 5π/7. We used 3 scales by subsampling the
image twice with a factor of 1/

√
2. A typical value of

β = 1 was used for the scale integration (Eq. (2)). For
Eq. (4), we set the normalization parameter σ to 3 and
the regularization parameter α to 0.005 for both meth-
ods. We initialized using manual seeds as depicted in
Figure 4(a) and executed both algorithms until conver-
gence, which was defined as the total change of the con-
tour being less than 25 pixels between two time-steps.

To show the extension of our method to 3D, we used
the 416×512×112 “Head MRT Angiography” sample
dataset from www.volvis.org, displayed as a MIP in
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Figure 5. Segmentation results in 3D

Figure 5(a). For this experiment we used 6 filters of
size 7× 7× 7 with bandwidths of 6 octaves and center
frequencies of π/2. We used 2 scales with ratio of 2 and
the parameter values β = 1, σ = 150 and α = 0.03 for
Eq. (2) and Eq. (4). We set manual seeds as depicted in
Figure 5(b).

5. Results

For optimized parameter settings for FMF and the
proposed method, we can in Figure 4 note that our
approach exhibits less leakage, indicating more robust
convergence. Furthermore, the execution time to gener-
ate the speed functions differs by several orders of mag-
nitude in favor of our filter-based method (31 minutes
vs. 1.9 seconds). For the 3D experiment in Figure 5(e),
we manually initialized with 3 seeds in large vessels to
display the ability to grow a large portion of the vessel
tree given sparse initialization.

6. Discussion and future work

We have presented an approach for segmenting
blood vessels using multi-scale integration of local
phase combined with level set propagation. We show

proof-of-concept examples in 2D and 3D, displaying
the effectiveness of the method. When using front prop-
agation techniques, stable convergence is relying on
“inside” and “outside” forces around the vessel bound-
aries to balance, and experience yields that our method
has stronger “outside” forces compared to the FMF
method. Furthermore, experiments show that the com-
putational efforts in generating the speed function for
propagation is very low using our method. We have
not spent any efforts on optimizing our implementa-
tions with respect to computational cost, but optimiza-
tion alone cannot reduce the complexity of the FMF al-
gorithm to a comparable simplicity level and execution
time. We are aware of the common problem that mean
curvature regularisation removes thin vessels, but the
strong filter response from the line structures counter-
acts these effects for our method. The current results
are proof-of-concept and we acknowledge the need for
more quantitative and qualitative comparisons to other
current methods and different types of data. In addition,
future work includes regularization of the filter output
and development of more optimal filters.
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